

INTERPROJECT LTD

Sofia - 1164, blvd. James Bouchier 28, floor 1 tel.: 00359 2423 3125, tel.: 00359 882 121 245, GSM: 00359 885 757 789 e-mail: n.ivanova@inter-project.bg, web-page: www.inter-project.bg

PROGRAMME THE PROVIDER at "INTERPROJECT" LTD FOR THE CONDUCT OF NATIONAL AND INTERNATIONAL TECHNICAL PROJECTS INTERLABORATORY COMPATISONS AND PROFICIENCY TESTING IN THE PERIOD 2015 - 2019

Accredited PROVIDER at "INTERPROJECT" Ltd. (Certificate of Accreditation № T-007/10.11.2015, valid until 10.11.2020) by Slovak National Accreditation Service (SNAS) conduct technical projects (TPs) for interlaboratory comparisons according to the requirements of EN ISO/IEC 17025:2005 (t.5.9.1.b) and EN ISO /IEC 17043:2010. In the attached tables present the planned technical projects objects, features, timing and prices.

Objective: To be made competent and responsible assessment of the actual measurement capabilities of laboratories by performing interlaboratory comparisons, the conclusion be realized with the participation of laboratories in measurements of various physicochemical and microbiological characteristics. Thus, a Laboratory is estimated sufficiently representative on its measurement capabilities.

Expected result: Report with an analysis of results and evaluation of actual measurement capabilities of participating laboratories.

Opportunities for comparative studies are offered in the following areas:

- 1. Natural waters (drinking, mineral, surface water, underground, bathing, sea, water from swimming pools, water for fish, irrigation)
- 2. Waste waters
- 3. Food of plant origin grain and grain products, sugar and confectionery, fruits, vegetables, vegetables and animal oils and fats
- 4. Food of animal origin meat and meat products; canned meat; fish, fish products and canned; eggs and eggs products; milk and milk products; honey bee; sterilized canned food-meat, dairy, and other prepared products of animal origin; oils and fats
- 5. Wines, spirits, beer, soft drinks and energy drinks
- 6. Solid fuels (coal, limestone, ash, gupsum)
- 7. Liquid fuels (petroleum products, lubricants) aviation fuel and car fuel; aviation fuel; anti-icing fluid; anti-icing fluid about surface treatment aircraft; oils; lubricants; special liquids
- 8. Textile and textile products

Organization: The control laboratories analyzed prior to testing sites (homogeneous enough source material) for compliance with current regulations. The organizer sends the test object to the participants, the test laboratories send the results of analyzes carried out in advance provided their form to report. The reports contain descriptions of objects to test, its characteristics ascribed values (measured indicators), mathematical and statistical analysis of results.

Confidentiality: The policy of conducting interlaboratory comparisons include controlled confidentiality of the participants. All testing laboratories provide confidential results by a coded number.

Participation: Each participating laboratory performs a number of measurements selected from her site characteristics test by applying the best method utilized in the laboratory or in the methods according to the instructions provided by the Organizer. **Participants are awarded certificates for participation in this Technical Project.**

<u>1. STARTING AND PLANNED TECHNICAL PROJECTS</u>

				Table 1		
N⁰	OBJECTS OF COMPARIS ON (PRODUCT)	CHARACTERISTICS (INDICATORS)	PERIOD	TECHNI- CAL PROJECT №	IMPLE- MENTA- TION price (euro)	
1	2	3	4	5	6	
1.	Water for drinking supply*	Sulphates, Chlorides, Total hardness, Fluorides, Hydrocarbons, Ca, K, Na, pH, Specific conductivity	2015	IP-61/2015 <i>finished</i>	160	
2.	Underground water (spring water)	Total water hardness, Chlorides, Sulphates, Ammonium ion, Nitrite, Nitrates, pH, Elemental composition (further specification), microbiological characteristics (further specification)	2016	IP-98/2016 Invitation (deadline 30.06.2016)	200	
3.	Mineral water*	Sulphates, Chlorides, Fluorides, Carbonates, Hydrogencarbonate, Na, K, Ca, Copper, Arsenic, pH, Specific conductivity	2016	IP-79/2016 Invitation (deadline 30.04.2016)	200	
4.	Irrigation water	Total water hardness, Chlorides, Sulphates, Nitrate nitrogen, Nitrite nitrogen, Ammonium nitrogen, Phosphates, Specific conductivity, Heavy metals (further specification)	2017	IP-49/2017	200	
5.	Water for fish	Suspended solids, Total phosphorus (as phosphates), Ammonium ion, Nitrite, Organophosphorus pesticides, Organochlorine pesticides, Heavy metals (further specification)	2017	IP-50/2017	190	
6.	Sea water	Ammonium nitrogen, Nitrite nitrogen, Nitrate nitrogen, Phosphates, Elemental composition, pH	2018	IP-99/2018	210	
7.	Drinking water*	Sulphates, chlorides, fluorides, COD, Organic nitrogen, dissolved iron Cu, Mn, Zn, Pb, Specific conductivity (at $T = 20^{\circ}C$)	2018	IP-122/2018	210	
8.	Surface flowing water	Specific conductivity, sulphates Chlorides, COD, phenols, cyanides, Cu, dissolved iron, Zn, Pb, microbiological characteristics (further specification)	2019	IP-109/2019	210	
9.	Underground water (spring)	Total hardness, chlorides, sulfates, ammonium ion, pH, Specific conductivity (at T = 20°C), Elemental composition	2019	IP-123/2019	210	
10.	Waste water	COD, sulfates, chlorides, total nitrogen, Phosphates (such as phosphorus), Fe	2015	IP-127/2015 <i>canceled</i>	150	

				1	3/9
11.	Waste water	COD, chlorides, phosphates (such as phosphorus) Ammonium, nitrite, (CrVI), petroleum products, Mn, Pb, Cd	2016	IP-101/2016 Invitation (deadline 20.02.2016)	220
12.	Waste water	Suspended solids, COD, Sulphates, Phenols, cyanides, pesticides, Heavy metals (further specification)	2016	IP-110/2016	230
13.	Waste water	Suspended solids, COD, Sulphates, Anionic synthetic surfactants, petroleum products, Heavy metals (further specification)	2017	IP-102/2017	240
14.	Waste water	Suspended solids, COD, Sulphates, Phosphates, phenols, Heavy metals (further specification)	2018	IP-81/2018	240
15.	Waste water	Suspended solids, COD, Sulphates, Phosphates, pesticides, Heavy metals (further specification)	2019	IP-125/2019	240
16.	Flour "Dobrudzha" (type 700)	Moisture, Total ash, Wet gluten yield (mechanical washing), Slack of gluten, Number of collapse, Acidity Neumann	2015 - 2016	IP-70/2015 <i>finished</i>	180
17.	Natural wine vinegar	Total acidity (as acetic acid), Total extract, Total sulfur dioxide, Fe	2015 - 2016	IP-126/2015 <i>finished</i>	160
18.	Apple vinegar, natural*	Total acidity (as acetic acid), Total extract, Total sulfur dioxide, Cu, Fe	2015 - 2016	IP-13/2015 <i>Invitation</i> (deadline 30.03.2016)	150
19.	Chutney*	Dry soluble residue, Dry matter content/ water content, pH, chlorides, fat content, acidity, content of volatile acids, reducing sugars, protein content	2016	IP-27/2016 Invitation (deadline 30.03.2016)	250
20.	Sugar*	Moisture/dry content, total sugar (invert sugar), ash content, pH	2017	IP-10/2017	160
21.	Pepper red ground*	Fats, Cellulose, dry content, Sulphates, Ash content, Protein, Nitrates	2017	IP-22/2017	180
22.	Cocoa*	Moisture, Fat, Total ash, Ash insoluble in 10% hydrochloric acid	2017	IP-48/2017	170
23.	Grain cereal	Hectolitre mass, Moisture, Wet gluten yield, Sedimentation number, Number of baking force, Others (further specification)	2018	IP-11/2018	180
24.	Children fruit puree*	Dry content, Total acidity, Zn, Cu, inorganic Sn, moisture, pH, sugar, Vitamin C, Starch	2018	IP-12/2018	190
25.	Oilseeds*	Impurities, Moisture, Fat, Fibers, Acidity, total protein content, Ash, Jodine value, Peroxide value	2018	IP-04/2018	230

					4/9
26.	Chocolate (confectionery) products	Moisture / dry matter Fat content, Reducing sugarsl (invert sugar), Peroxide value, Protein content, ash	2019	IP-26/2019	190
27.	Edible salt (table salt)*	Sodium chloride, Potassium iodate, Water-insoluble substances, Sulphate, Moisture, Ca, Mg, pH	2019	IP-21/2019	170
28.	Tomato paste - sterilized vegetable can*	Dry soluble residue (by refractometer), Dry matter content (by weight), moisture, pH, sugar, titratable acidity, chlorides	2019 г	IP-112/2019	240
29.	Animal fat (butter)	Fat content in the total mass, Fat in dry matter, Moisture/dry content, Sodium chloride, Acidity	2015 - 2016	IP-72/2015 <i>finished</i>	210
30.	Beef sausages	Water content, Fat, Ash content, Sodium chloride, Protein (Kjeldahl nitrogen), Starch content	2016	IP-31/2016	240
31.	Bee Honey*	Sucrose, reducing sugars, water content, specific electroconductivity, total acidity, diastatic activity Hydroxymethylfurfurol (HMF)	2016	IP-90/2016 Invitation (deadline 30.04.2016)	250
32.	Pate in can (poultry meat)*	Water content, Fat content in the total mass, Sodium chloride,Protein (Kjeldahl nitrogen), Danofloxacin, Enrofloxacin	2017	IP-121/2017	225
33.	Pasteurized cow milk*	Fat, dry matter / water content, acidity / °K, Acidity / °T, Ash content, Protein, Lactose, Starch content	2017	IP-82/2017	225
34.	Egg product*	Fat, water content, fat content, free fatty acids, sodium chloride, free fatty acids, pH, ash	2017	IP-51/2017	240
35.	Melted smoked cheese*	Fat content in the total weight, fat in dry matter, Sodium chloride (table salt), protein, dry matter / water content	2018	IP-111/2018	240
36.	Mayonnaise*	Ash, moisture and volatile substances, Fat, Acidity, protein, Dry substance, pH,	2018	IP-52/2018	220
37.	Minced beef	Water content, fat, chlorides, Protein, Starch, Ash content, Peroxide value, acidity, pH, microbiological characteristics (further specification)	2018	IP-63/2018	240
38.	Cow cheese*	Fat, sodium chloride (table salt), protein, dry matter / water content, Dry fatless residue, Acidity / °K, Acidity / °T, Ash content, microbiological characteristics (further specification)	2019	IP-73/2019	250
39.	Caviar fish*	Water content / dry matter, Fats salt content, pH, titratable acidity, protein content / volatile basic compounds	2019	IP-75/2019	250

	1			1	5/9
40.	Meat finely minced boiled*	Water content, fat content in total weight, Sodium chloride, protein content, fat, starch, titratable acidity, pH, Ash, Nitrites	2019	IP-77/2019	240
41.	White wine dry* "Chardonnay"	Relative density, Alcohol content, Total dry extract, Sugars (as reducing sugars), Total acidity (as tartaric acid), Volatile acidity (as acetic acid)	2015 – 2016	IP-24/2015 <i>finished</i>	260
42.	Grappa*	Alcohol content, density, Aldehydes (as acetaldehyde), Higher alcohols, Esters (such as ethylacetate), Total acidity (as acetic acid)	2015 – 2016	IP-15/2015 <i>finished</i>	260
43.	Lager beer*	Alcohol content (vol %), Extract content (degree Plato)	2016	IP-103/2016 <i>Invitation</i> (deadline 30.04.2016)	120
44.	Dry red wine "Cabernet Sauvignon"*	Relative density, Alcohol content, Total dry extract, Sugars (as reducing sugars), Total acidity (as tartaric acid), Volatile acidity (as acetic acid), Total sulfur dioxide, Free sulfur dioxide, Citric acid, Cu, Fe, pH	2016	IP-100/2016 Invitation (deadline 30.04.2016)	260
45.	Distillate wine*	Alcoholic strength, density, Aldehydes (such as acetaldehyde), Esters (such as ethyl acetate), Total acidity (as acetic acid), methanol; Higher alcohols - 2-butanol, 1-propanol, 2-methyl- 1-propanol, 1-butanol, 3-methyl-1-butanol	2016	IP-104/2016 Invitation (deadline 30.04.2016)	260
46.	Soft-drink*	sugars, Acidity (as Citric acid), Carbon dioxide, Ash, pH, Dry matter on refractometer at 20°C	2016	IP-09/2016 <i>Invitation</i> (deadline 30.04.2016)	175
47.	Dry red wine "Merlot"*	Relative density, Alcohol content, Total dry extract, sugars (such as reducing sugars), Total acidity (as tartaric acid), Volatile acidity (as acetic acid), Total sulfur dioxide, Free sulfur dioxide, Citric acid, Cu, Fe, pH	2017	IP-47/2017	260
48.	Brandy wine*	Alcoholic strength, density, aldehydes (such as acetaldehyde), esters (such as ethyl acetate) Total acidity (as acetic acid), methanol; Higher alcohols - 2-butanol, 1-propanol, 2-methyl-1-propanol, 1-butanol, 3-methyl-1-butanol	2017	IP-80/2017	260
49.	Fruit nectar drink*	Sugars, acidity (as citric acid), Carbon dioxide, ash, pH, dry matter by refractometer at 20°C	2017	IP-83/2017	180
50.	dry white wine "Dimyat"*	Relative density (specific gravity), Alcoholic strength, Total dry extract, Sugars (such as reducing sugars), Total acidity (as tartaric acid), Volatile acidity (as acetic acid), Total sulfur dioxide, Free sulfur dioxide, Citric acid, Cu, Fe, pH	2018	IP-132/2018	260

					6/9
51.	Fruit Grappa*	Alcoholic strength, density, aldehydes (such as acetaldehyde), esters (such as ethyl acetate), Total acidity (as acetic acid), methanol; Higher alcohols - 2-butanol, 1-propanol, 2-methyl-1-propanol, 1- butanol, 3-methyl-1-butanol	2018	IP-84/2018	250
52.	Boza	Benzoic acid, dry content, Sorbic acid, Zunet acesulfame-K, sugars, Aspartame, Ash pH	2018	IP-85/2018	190
53.	Dry rose wine*	Relative density (specific gravity), Alcoholic strength, Total dry extract, Sugars (such as reducing sugars), Total acidity (as tartaric acid), Volatile acidity (as acetic acid), Total sulfur dioxide, Free sulfur dioxide, Citric acid, Cu, Fe, pH	2019	IP-108/2019	260
54.	Grappa*	Alcoholic strength, density, aldehydes (such as acetaldehyde), esters (such as ethyl acetate), Total acidity (as acetic acid), methanol; Higher alcohols - 2-butanol, 1-propanol, 2-methyl-1-propanol, 1- butanol, 3-methyl-1-butanol	2019	IP-131/2019	260
55.	Soft-drink*	sugars, Acidity (as Citric acid), Carbon dioxide, Ash, pH, Dry matter on refractometer at 20°C	2019	IP-133/2019	175
56.	Brown coal*	Total moisture, Ash in dry mass, Volatile matter on a dry ash-free basis, Total sulfur by dry weight, calorific dry mass	2015 - 2016	IP-97/2015 Invitation (deadline 20.02.2016)	240
57.	Gypsum	Calcium sulfate dihydrate, calcium carbonate, magnesium carbonate, silica, water of crystallisation	2015	IP-128/2015 <i>finished</i>	200
58.	Limestone (calcium carbonate)	Calcium carbonate, magnesium carbonate, volatile substances, diiron trioxide, Silica	2016	IP-20/2016 Invitation (deadline 30.04.2016)	225
59.	Lignite coal*	Analytical moisture, Ash on dry weight, Total sulfur on dry weight, Total sulfur by dry weight, Carbon dry weight, Calorific value	2016 - 2017	IP-113/2016	225
60.	Black coal*	Ash on dry weight, Volatiles of dry ash-free basis, Total sulfur on dry weight, Carbon dry weight, Calorific	2017	IP-95/2017	225
61.	Ash	SiO ₂ , Al ₂ O ₃ , Fe ₂ O ₃ , CaO, MgO, P ₂ O ₅ , SO ₃	2017	IP-05/2017	225
62.	Brown coal*	Total moisture, Ash in dry mass, Volatile matter on a dry ash-free basis, Total sulfur on dry weight, Carbon dry mass, Calorific value	2018	IP-87/2018	210

	1	,,			7/9
63.	Gypsum	CaSO _{4.} 2H ₂ O, CaSO4, CaSO4 hemihydrate, NaCl, CaCO ₃ , MgCO ₃ , Fe ₂ O ₃ , Al ₂ O ₃ , SiO ₂ , water of crystallization	2018	IP-86/2018	225
64.	Lignite coal*	Analytical moisture, Ash on dry weight, Total sulfur on dry weight, Carbon dry mass, Calorific value	2019	IP-124/2019	210
65.	Limestone (calcium carbonate)	CaCO ₃ , MgCO ₃ , volatiles, pH, Fe ₂ O ₃ , Al ₂ O ₃ , SiO ₂	2019	IP-08/2019	225
66.	Diesel fuel*	Density, Fractional composition, Acid value, actually resins	2015	IP-130/2015 <i>finished</i>	210
67.	Diesel fuel*	Density, Fractional composition, Kinematic viscosity, Acid value, Limit temperature of filterability through a cold filter, Freezing temperature, Temperature of turbidity, Sulfur, Flash point in closed cup	2015 - 2016	IP-67/2015 Invitation (deadline 30.06.2016)	270
68.	Motor oil*	Kinematic viscosity, Viscosity index, Density, Acid value, sulfate ash, Mechanical impurities	2016	IP-53/2016 Invitation (deadline 30.04.2016)	260
69 .	Jet fuel*	Acid value, Flash point, Kinematic viscosity at minus 20 °C, Net heat of combustion, Fractional composition, Density at 15 °C, Temperature of initial crystallization, Modified index of waters separometar	2016	IP-120/2016 Invitation (deadline 30.04.2016)	280
70.	Gasoline*	Net calorific, Density at 15 °C, Fractional composition, octane, Interaction with water - volume change	2017	IP-115/2017	290
71.	Transformer oil*	Acid value, Water content, Flash point (in closed cup), Breakdown voltage, Permittivity at 90 °C (tg Δ), Density, Kinematic viscosity, Pour Point	2017	IP-69/2017	300
72.	Anti-icing fluid for surface treatment of BC	Refractive index at 20 °C, Dynamic viscosity in Brookfield at 20 °C, pH at 20 °C	2017	IP-117/2017	210
73.	Gas oil for industrial and utilities purposes*	Water content, Fractional composition, Ash, Kinematic viscosity at 40 °C, Sulfur, Flash point in closed cup, Specific heat of combustion	2018	IP-96/2018	300
74.	Transmission oil*	Density, Kinematic viscosity, Viscosity index, Viscosity at low temperatures – Brookfield, Water content, Flash point (in open cup), Pour Point, Antiseizure properties, Foaming	2018	IP-78/2018	290

					8/9
75.	Aviation gasoline*	 Temperature of initial crystallization, Test for corrosion of a copper plate, 2h at 100 °C, Interaction with water - a change in volume, Net heat of combustion, Density at 15 °C, Distillation: 10 vol% distillation temperature, °C 40 vol% distillation temperature, °C 50 vol% distillation temperature, °C 90 vol% distillation temperature, °C Near boiling temperature, °C Amount of 10 vol % plus 50% vol distils at a temperature of, °C Residue, vol% Losses, vol% 	2018	IP-118/2018	260
76.	Diesel fuel*	Density, Fractional composition, Kinematic viscosity, Acid value, Limit temperature of filterability, Freezing temperature, Cocks residue, Sulfur, Flash point in closed cup	2019	IP-114/2019	190
77.	Boiler fuel (mazut)*	Water content, Mechanical impurities, Ash, Sulfur, Density at 20 °C, Flash point in open cup, Kinematic viscosity at 80 °C, Specific heat of combustion	2019	IP-64/2019	190
78.	Jet fuel*	Acid value, Flash point, Kinematic viscosity at minus 20 °C, Net heat of combustion, Fractional composition, Density at 15 °C, Temperature of initial crystallization, Modified index of waters separometar	2019	IP-92/2019	210
79.	Cotton textiles*	Resistance to water penetration, Determining the pH of water extract, Maximum tensile strength, Elongation at maximum tensile force	2015 - 2016	IP-105/2015 <i>finished</i>	200
80.	Textile item – textile toy	Resistance to water penetration, Content of free and hydrolysed formaldehyde, The pH of the aqueous extract (pH units)	2015 - 2016	IP-129/2015 <i>canceled</i>	230
81.	Impregnated textiles*	Air permeability, Resistance steam passage at steady speeds, Resistance to water penetration	2016	IP-106/2016 Invitation (deadline 30.08.2016)	220
82.	Textiles military purposes*	Maximum force to rupture using STRIP method, pH of water extract, Free and hydrolyzed formaldehyde	2017	IP-107/2017	210
83.	Textile item*	Mass per unit area, shrinkage (dimensional change when washing), The pH of the aqueous extract (pH units)	2018	IP-116/2018	230

84.	Cotton blend fabrics / synthetics	The pH of the aqueous extract - EN ISO 3071, Maximum force to rupture using STRIP method - base / weft - EN ISO 13934-1	2019	IP-119/2019	230
-----	---	---	------	-------------	-----

9/9

<u>*Note</u> – such technical projects interlaboratory comparisons have completed development and approval of a comparative matrix material/CMM (homogeneity tested, proven stability period) for the control accuracy of the results and validation and / or verification of test methods. That type CMM is a free bonus for participants. Other sites:

Based on proposals by accredited / recognized laboratories are or control bodies and upcoming studies will be offered other technical projects. Objects of comparison, their characteristics (indicators) and the corresponding period of the technical projects shall be subject to the Applicant. Technical Projects and above the period of implementation to be updated and adjustments depending on the relevance of the normative and normative-technical documents. (The fee for participation in the announced projects not included VAT. The amount is net and subject to VAT.)

<u>Note:</u> In the process of implementing the above technical projects are created matrix reference materials (CM), based on the legal requirements with the respective analysis certificate. They are submitted together with the report of interlaboratory comparison and certificate of participation, appear bonus for each participant in this technical project. Matrix reference materials may be used to control the accuracy of the measurement results and validation (verification) of the test methods. Since our information, only one package of this type cost more than \in 250, we have a metrology and economic benefit from participation in a technical project. Based on the established types of matrix CM, provides in perspective Accreditation as a manufacturer of matrix certified reference materials procedures "by calibration" and "Between-laboratory certification".